Team No: 41

Problem Statement

01

Extract the values of vitals like Heart Rate, SpO2, RR, Systolic Blood Pressure, Diabolic Blood Pressure, and MAP from ICU monitor images

02

Extract the waveforms of Heart rate, SPO2, RR and digitize them

Overview of Pipeline

01

Monitor Screen Extraction

Step 1: Monitor Screen Extraction

ResNet with modified output layer

- ResNet backbone + MLP head with 8 output neurons predicting the 4 corners
- We freeze the backbone with weights from unsupervised training of SimCLR and finetune the MLP head
- Good performance on training data, unsatisfactory on unlabelled data

Regression vs Classification

We wish to maximise the mutual information between the ground truth images and labels.

I(Y,X) = H(Y) - H(Y|X)

To maximise I(Y,X) -

- Maximise H(Y), i.e. entropy of the predicted labels
- Minimise H(Y|X), i.e. entropy of predicted labels conditioned on the input image

Theoretically, turning this regression to a classification problem with crossentropy loss should lead to more robust predictions

• The regression loss minimise H(Y|X)

• CE loss simultaneously minimises H(Y|X) while maximising H(Y)

Probabilistic Heatmaps

Model:

Input: 3 channel image Output: 4 channel heat map (one for each corner)

UNet has heavy encoder and decoder -> high inference time

Segformer has a light decoder, better accuracy and faster inference

Performance Comparison for Segmentation

Resnet result

Model	Time	Validation Score	
Segformer	0.7 seconds	4.235 pixels	
UNet	3 seconds	6.516 pixels	

UNet/SF result

Monitor Classification & Vital Detection

Step 2: Monitor Classification and Vital Detection

Initial approach:

Classification model on ResNet 50 while YOLO handles each of the 4 layouts separately

> Modified approach: Vital Detection only using Yolov8 (Bypassing the Classification)

Learnings:

 Initial approach -> makes pipeline unnecessarily large, having to load 4 different models
YOLO -> capable of handling classes present in the dataset without an explicit classification ResNet model

While testing Yolov8...

Drawbacks of the classification dataset for our approach:

01

Limited orientation of vitals on monitor layouts in the dataset, not representing the complete distribution in the unlabelled dataset

02

Incomplete or no labeling of certain vitals (artifacts or noise) in the dataset.

> **Result**: Poor performance on unlabelled dataset

Improvements with custom dataset

Trained on classification and test on unlabelled

We use the YoloV8 trained on our custom dataset as the final model for the vital detection step

Trained on our new dataset and test on unlabelled

CRAFT for ROI Heatmaps

Improving YoloV8 using CRAFT

		10:2	26
"If the disting hard and hard	120 50	87	23
" up man and and and and and and	^m (90)		ST -0.0994
*2052	100 BO		
Man Man		93	
121 40 144 Sys / 61a Hean 100		20	

- Synthesized image = Input image*Text_score_heatmap
- The training involved 6 classes of HR, RR, SPO2, SBP, DBP, MAP
- Incremental improvement in the YoloV8 performance + 0.7s overhead in inference --> decided to skip this enhancement

YoloV8 Training Performance

Dataset

Normal Datas

Synthesized image Craft's outpu

	mAP-50	
set	98.80%	
es (Using ut)	99.00%	

Optical Character Recognition

	Model	Runtime	
	TesseractOCR	> 1.5 seconds	Requ Pc
	Paddle OCR	0.4- 0.5 seconds	Requ
	ABINet	> 1.5 seconds	Nc
	Parseq Tiny	~ 0.3 seconds	

Cons

uires pre-processing, Poor performance

uires pre-processing, Longer runtime

o pre-processing, Longer runtime

None

Final OCR Model

Parseq: Scene Text Recognition (STR) model, pre-trained on multiple real and synthetic datasets

Advantages:

56

• Runtime < 0.15s Doesn't require pre-processing

Digitization

Pre-processing

Waveform Image

Contour Graph

Contour Detection

Algorithm

Choose a starting point from left most strip

Calculate the means between all such neighboring contours

Represent the contour thickness using its middle pixel

Find contours occurrences in the next strip

Novelty

Posing the quadrilateral bounding box problem as a 4channel classification problem

Utilising CRAFT to highlight regions of interest(ROI), to further distill information for YoloV8

Average Inference Time: 1.8s !!

Designed a novel algorithm for graph digitization under the presence of artifacts

Original Image

Segmented Image

Vitals Detected

HR:85 RR:12 SpO2:100 SBP:186 DBP:87 MAP:139

Extracted Vitals and Waveforms

Thank You!

