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Abstract

The advent of deep learning models and algorithms in the field of Histopathology, cou-
pled with the utilization of Whole Slide Images (WSIs), necessitates the implementation
of a Quality Control (QC) mechanism to ensure the accuracy and reliability of the mod-
els’ performance. In Chapter 1, we present HistoROI, a ResNet18-based classification
model designed to classify patches within WSIs into six distinct pathology-relevant re-
gions of interest (ROIs): epithelial, stroma, lymphocytes, artifacts, miscellaneous, and
adipose. HistoROI is trained using a human-in-the-loop active learning paradigm, which
incorporates diverse training data to enhance generalization capabilities. To evaluate the
efficacy of HistoROI, we compared its performance with a widely used QC tool known
as HistoQC, specifically focusing on artifact detection tasks. Through experiments con-
ducted on a dataset comprising 93 annotated WSIs, HistoROI demonstrated superior
performance in comparison to HistoQC. Additionally, we enhanced the training proce-
dure of the HistoROI classification model by incorporating the Supervised Contrastive
Learning technique.

In Chapter 2, I present the findings of my internship project, where I explored
the application of the Supervised Contrastive Learning method for opacity detection
in Chest X-rays. The task involved binary classification to determine the presence or
absence of opacities in the images. My experiments revealed that employing Supervised
Contrastive Learning instead of conventional training methods significantly boosted the
model’s performance, demonstrating improved accuracy and efficiency in opacity detec-
tion.

We present the findings of Chapter 3, focusing on the Cell detection problem within
the Ocelot 2023 challenge. Traditionally, cell detection methods solely rely on train-
ing models using zoomed-in patches containing cells. However, the Ocelot challenge
dataset provides us with additional information, including zoomed-out tissue patches
along with annotations. Through our observations, we demonstrate that our model,
which considers a broader tissue-level context in conjunction with the input patch for
cell detection and classification, outperforms conventional models trained solely on cell
patches. This highlights the importance of exploiting cell-tissue interactions when ad-
dressing cell detection and classification, emphasizing the need to consider the broader
context for improved results.

In Chapter 4, we address the critical issue of quality control in Whole Slide Images
(WSIs) using advanced deep learning techniques. Our study focuses on developing
multiple segmentation models based on the U-Net architecture to accurately detect
and segment various artifacts, including pen markings, blur levels, tissue folds, tissue
regions, and fat. To train these models, we leverage the HistoROI framework to generate
a dataset that eliminates existing biases in WSIs. The performance of our models
is evaluated by comparing the resulting usable masks with the widely used quality
control tool, HistoQC, yielding a high level of agreement between the two approaches.
Additionally, we assess the blur level segmentation model on two publicly available
datasets, TCGA@Focus and Focuspath. These findings highlight the effectiveness of our
deep learning-based approach in addressing quality control challenges in WSIs, providing
valuable insights for improving the accuracy and reliability of histopathological image
analysis.
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Chapter 1

Deep learning based automatic

patch level segregation model and

its use in Quality Control of WSIs

1.1 Introduction

With the advancements in digital pathology came the technique of digitizing a tissue
slide in an image format called as the Whole Slide Imaging (WSI). This technique makes
it easier for pathologists to scroll and zoom in on an area of interest in the image. Since
these WSI images have a resolution that may go upto 0.25µm per pixel i.e. the height
and width of the image may go upto 1 million pixels, it becomes difficult to analyze
the enormous images. Hence, these images are usually analyzed by looking at their
small patches at multiple zoom levels. While analyzing the patches, it is found that a
significant number of patches are not usable due to many reasons like the patch being
from background or the patch consisting of some artifacts making it non-usable and
other reasons. This arises the need of keeping a Quality Control check on the Whole
Slide Images. Many deep learning models are trained using WSIs in various problem
statements. Hence, it becomes necessary to have a pre-processing tool so that we can
feed only the useful and relevant regions in the Whole Slide Images to the models to
have a better performance.

1.1.1 Potential artifacts in a Whole Slide Image

Artifacts in a WSI can be intrinsically present within the tissue, may get introduced in
the slide preparation process and its digitization or as a result of ageing or long term
slide storage. Examples of artifacts introduced during the slide preparation process in-
clude variability in tissue section thickness, tissue folding, variability in H&E staining,
air bubbles and/or dirt under the coverslip, pen-markings, old glass. Artifacts intro-
duced while digitization of the slide occur mainly due to the scanner being out of focus
generating blurry images or the jpeg compression algorithm. The most common histo-
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1.2 Review of Literature

logical artifacts can be seen in the Fig 1.1. It is evident from the literature review below
that the presence of artifacts in the WSI dataset downgrades the performance of many
models. Hence, it becomes essential to have a Quality Control check as a pre-processing
unit in the routine usage of histological images.

1.2 Review of Literature

1.2.1 Quality Control Stress Test

The paper[1] explores the influence of artifacts in Whole Silde Images on the performance
of the pre-trained, validated deep-learning based model for prostate cancer detection.
They produce the most common artifacts synthetically by digital means and perform a
systematic stress test for Deep-Learning based model for prostate cancer (PCA) detec-
tion.

Datasets

For the stress test purpose, the authors of [1] used six different datasets from four
institutions, all digitized using different scanner systems. To reduce the computation
cost, a random crop of 120,000 patches (all patches are classified by the model correctly)
from each dataset was generated, each crop consisting of 50,000 patches with tumor
tissue, 50,000 patches with nonneoplastic glandular prostate tissue, and 20,000 patches
with nonglandular tissue.

Model Description

The Deep Learning-based patch-level classification model for prostate cancer detection
proposed in [6] was used in this study. The model takes a 300x300 patch as an input
and has a InceptionResnetV2[7] architecture with a classification head to classify three
classes named prostate glandular tissue, nonglandular tissue, and tumor tissue.

Artifacts Generation

The most common artifacts in the routine histopathology practice were synthetically
generated. These include focus, elastic deformation, brightness, contrast, dark spots
(e.g., dust, cover glass scratches, and other kinds of contamination), synthetic threads
overlying tissue, contaminating squamous epithelial, greasy fingerprints on the slide
surface, and H&E staining scheme (Fig 1.1). Other artifacts related to digital processing
of the image like jpeg compression, rotation of patch, and flipping of patch were also
synthesized.

2



1.2 Review of Literature

Figure 1.1: Common histological artifacts and stress test design [1]

Testing Pipeline and Results

During the stress test, each artifact was introduced in all the patches of all 6 datasets
maintaining the variability in each artifact and model classification was carried out on
these modified patches to estimate model accuracy in presence of artifacts. The results
of the test of all datasets were analyzed and summarized with regard to false positive
(benign tissue classified as tumor) and false negative results (tumor tissue classified as
benign) showing the impact of each artifact on the model performance which correctly
classified all the patches before inducing artifacts (Fig 1.2)

Figure 1.2: Analysis of artifact-induced misclassifications [1]

3



1.2 Review of Literature

1.2.2 The Effect of Quality Control on Accuracy of Digital Pathology

Image Analysis

The paper [2] discusses various Quality Control issues which are introduced right from
the start of the slide preparation upto the image digitization stage. This work aims
to determine the extent to which image quality issues affect the automated analysis.
This study attempts to assess the image quality of a digital slide dataset from a clin-
ical trial and provides a comprehensive view of how image quality affects subsequent
analyses.Their experiment design flowchart is represented in Fig 1.3. The experiment is
divided into 6 sections as follows:

1. Colon cancer data is collected through clinical trial over 5 years. For each of the
2211 colon cancer cases scanned, tumours were identified by a train pathologist
and the tumour region was annotated. Random 50 points were generated from
the annotated region and each point was labelled either tumour or stroma.After
removing non-informative data points, the dataset totaled 106268 pathologist-
scored x-y co-ordinates

2. The Machine Learning algorithm published in [8] was used for training and testing
on the above dataset. It used random forests algorithm[9] to learn an optimized
minimal set of features derived from a patch of 256x256 pixel area surrounding
the center of each labelled x-y coordinate. Once the random forest was trained,
predictions were made for each x-y co-ordinate and Tumour-Stroma Ratios (TSRs)
for each slide were generated per-case.

3. The top 100 worst cases after testing were picked out for manual checking of
Quality Control issues. Most of the observations consisted of artifacts created due
to variability in staining levels. The authors predicted that applying image analysis
to a dataset free from these artifacts would improve the model performance.

4. The pathologists were required to visually inspect all 2211 colon cancer cases and
apply the single most appropriate classification to each case.

5. Based on algorithm-pathologist TSR differences, algorithm performance was as-
sessed using the clinical trial dataset that had been labelled by a pathologist. To
determine how and to what degree the algorithm is impacted by the dataset issues,
observations were made using the QC categories with the biggest differences.

6. The algorithm was retrained and tested using both the full dataset and the AC
accepted cases only. Using the same methodology as the original algorithm, 10 fold
cross validation was performed and the accuracy was recorded for 4 combinations:
training and testing on all the data; training and testing on the QC dataset only;
training on the QC dataset and testing on the whole dataset; training on the whole
dataset and testing on the QC dataset

The results (Fig 1.4) indicate that quality issues clearly affect performance of automated
solutions to varying extents, and need to be compensated for either prior to processing,
or as part of algorithm design, in order to avoid error in processing routine digital slides

4



1.2 Review of Literature

Figure 1.3: Experiment Design Flowchart [2]

Figure 1.4: Effect of removing rejected QC images on algorithm accuracy [2]

1.2.3 HistoQC: An Open-Source Quality Control Tool

Introduction

Various types of artifacts get introduced in the final Whole Slide Image (WSI) due to
small unavoidable errors made during the process of slide preparation and its digitiza-
tion. Manual review of glass and digital slides is laborious and have a high variability
subject to different pathologists. Hence, the authors of [10] developed a tool which
ensures a reproducible automated approach of precisely localizing artifacts to identify
slides that need to be reproduced or regions that should be avoided during computational
analysis.

Methods

To run the HistoQC tool, the user supplies a configuration file consisting of parameters.
The important ones include which modules should the tool run and in what order,
from what level of the WSI should the image be extracted for analysis, different kernel
sizes and thresholds for different modules and other parameters. Once all the modules
mentioned in the configuration file are executed by the python-based pipeline, relevant
output images are created which includes thumbnail of the WSI, a mask indicating the
useful region in the WSI, a mask pointing at the blurry locations in the image, a mask
showing if there are any pen markings in the image and so on.

5



1.2 Review of Literature

Results and Discussion

Two pathologists with experience in digital pathology were asked to grade each of the
output masks of HistoQC as either acceptable or not acceptable in order to validate
the results provided by the HistoQC tool. A minimum 85% area overlap between the
pathologists’ visual evaluation and HistoQC’s computational evaluation of artifact-free
tissue was required to be considered acceptable. Overall, there was 95% (477 of 500)
agreement between HistoQC and the experts.

1.2.4 PathProfiler: Automated Quality Assessment of Retrospective

Histopathology WSI Cohorts by AI

The paper [3] proposes a a quality assessment pipeline in which possible multiple artifacts
are predicted in a same region along with diagnostic usability of the image. A multi-task
deep neural network is trained to predict if an image tile is usable for diagnosis/research
and the kind of artifacts present in the image tile. Quality overlays are then generated
from image tile predictions. Quality overlays are further mapped to a standard scoring
system to predict the usability, focus and staining quality of the whole slide images.

Dataset Annotation

A subset of Prostate Cancer cohort was annotated by specialist urological pathologists
to create a dataset with labels for training and testing purpose. This dataset consisted
of 107 H&E stained WSIs of prostate tissue (biopsies and TURPs) from the ProMPT
cohort and 91 H&E stained WSIs of contemporary prostate biopsy cases. The 198
slides provided a manually selected dataset of 1711 annotated image patches which was
divided into the training set (80%), test set (10%), and validation set (10%) for patch
level classification model, and the dataset of 198 annotated whole slides which was
divided into the training set (60%) and test set(40%) for the models predicting the slide
level quality score.

Multi-label Model Training

The training pipeline that the PathProfiler follows is depicted in Fig 1.5 A pre-trained
Resnet-18 architecture [11] was used which takes 3-channel input images at a size of
224×224 pixels for the multi-label model training. The last fully connected layer was
modified to output six classes with linear activation functions.
Dataset used for the training consisted of 1711 patches (split as 80%,10%,10%) with
labels annotated by specialist urologists as per the Fig 1.6.
Since noisy labels in the dataset were inevitable, the authors of [3] employed the Huber
loss Function[12] (with δ=1) which is robust to label noise. The Huber Loss function is
as follows:

Lδ(x, y) =

{
1
2(x− y)2 for |x− y| ≤ δ

δ|x− y| − 1
2δ

2 otherwise
(1.1)

The model was trained for 200 epochs with a batch size of 100, learning rate of 1e-4 and
a weighted batch sampler to handle the label imbalance.

Once this model is trained, on passing all the patches from tissue region through this

6



1.2 Review of Literature

model, a quality overlay is generated for each output category. In the next step, we map
the predicted quality overlays to the slide-level standardised scoring system. For this,
statistical parameters of quality overlays are used to predict slide-level quality scores;
overall usability of the WSI (binary 0 or 1), and a score 0-10 for quality of focus and H&E
staining from the lowest quality to highest quality, where the cut-off score for accept-
able quality for diagnostic purposes is 4. The labels to train these models (that predict
the slide level quality scores) are provided by the urologists for each slide (train-60%,
test-40%)

Figure 1.5: PathProfiler quality assessment pipeline [3]

Figure 1.6: Patch level labels [3]

Results

The model performance on the test dataset is shown in Fig 1.7 and Fig 1.8. The Table
F in Fig 1.8 shows a very high correlation between the metrics defined by slide level
predictions and the scores provided by the urologists for the overall usability, focus and
staining of all the WSI images.
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Figure 1.7: Model performance for test dataset of image patches [3]

Figure 1.8: Average Quality measures of patches and slide level predictions[3]
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1.3 HistoROI: Histopathology-specific preprocessing

1.3 HistoROI: Histopathology-specific preprocessing

A Whole Slide Image is a digitized version of a tissue section carefully taken out from
a particular organ. The tissue section consists of multiple type of cells like epithelial,
stroma, lymphocytes and so on. Identification of these cells in the WSI sometimes
become essential in various diagnostic tasks. In this section, we introduce the HistoROI
- a ResNet18-based classifier to segregate WSI into six broad pathology types - epithelial,
stroma, lymphocytes, artifacts, miscellaneous and adipose. A human-in-the-loop active
learning approach is used to train the HistoROI, ensuring variations in the training data
for better generalisation.

Figure 1.9: Human-in-the-loop training pipeline for HistoROI. Actions in red boxes are au-

tomatic, and actions in green boxes are manual. (a)Embeddings of the patches of WSI are

divided into clusters. (b) Clusters are manually annotated. Heterogeneous clusters are re-

clustered(shown in dotted line) (c) Annotated data is added to previously annotated data and

HistoROI is trained with updated data. (d) The trained model is inferred on multiple WSIs.

WSIs with poor performance are manually identified and annotated in the next iteration of

training.

1.3.1 Datasets

For the training of the HistoROI, patches are carefully selected from 50 WSIs in the
BRIGHT[13] dataset to capture variations for better generalisation. The dataset consists
of more than 2 million patches from these 50 WSIs.
In order to validate the performance of HistoROI on correctly identifying the ’artifacts’
class, a dataset of 93 WSIs from TCGA data portal is created by manually annotating
the foreground tissue region in all WSIs. This dataset contains tissues slides from the
organs of breast, lung, kidney and prostate with almost equal number of slides from
each organ.
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1.3.2 Methods

Annotation of a single WSI

Patches are extracted from the 10x magnification of a WSI with size 256x256. The
patches with more than 95% of the pixels having average pixel value more than 230
are discarded. These patches are passed through the EfficientNet-B0 model[14] and 40-
dimensional feature vectors are obtained for each patch from the 1st block of the model
using average pooling. The features obtained are then passed through the K-means
clustering algorithm to make 32 clusters. By visualizing 25 random samples from each
cluster, the cluster is assigned one of the class from 6 classes (1. Epithelial 2. Stroma 3.
Miscellaneous 4. artifact 5. Fat and 6. Lymphocytes). If the samples from a particular
cluster does not fall in any of the above 6 classes, it is called as a heterogeneous cluster.
Features of patches from all the heterogeneous clusters are again passed through the K-
means algorithm to make 32 clusters and each cluster is assigned a label). The clusters
which remain heterogeneous at this point are now discarded.
An initial dataset of 20 WSIs is created by annotating each WSI according to the above
procedure.

Human-in-the-loop training

In our case, the dataset contains many data points with similar features. Hence, by
manually annotating each WSI, we are not utilizing the efforts of data annotators opti-
mally. Hence, to address this problem, we train a model which helps in the annotation
of new WSIs with Human-in-the-loop approach.
We initially train a Resnet-18 based six-class classifier with the data from 20 WSIs (15
WSIs for tranining and 5 WSIs for validation). Cross Entropy loss is minimized with
Adam optimizer[15] and the model with the least validation loss is inferred on all the
WSIs from the BRIGHT dataset. WSIs along with their predictions are visually anal-
ysed using QuPath and the ones with poor performance indicate that these WSIs are
out of the distribution of the training dataset. Hence, these WSIs are then annotated
and added to the training dataset for further fine-tuning of the classifier.

This cycle is repeated for 3 times adding 10 new WSIs each time into the training
set. Finally, we have a training dataset from 50 carefully selected WSIs which contain
enough variation for generalisation. The whole process of Human-in-the-loop training
is summarized in Fig 1.9. Final HistoROI six-class classification model is then trained
using these 50 WSIs.

1.3.3 HistoROI as a Quality Control Tool

To identify the performance of HistoROI on artifact prediction, 93 WSIs from the TCGA
data portal[16] of four different organs (breast-27, lung-21, kidney-21, prostate-24) were
hand-annotated by our pathologist. We created a patch-usability mask for each WSI
using the predictions of the HistoROI model (patches classified as artifacts and adipose
are not usable) and compared it with the usability masks obtained from running the
popular HistoQC[10] tool.
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Problems with HistoQC tool

The default magnification level of the WSI image used by the HistoQC tool for running
its model is (1.25x). Hence, the HistoQC tool extracts the working image from higher
levels of the WSI file using Openslide library considering that the level 0 corresponds
to the image of highest magnification. But, when images are extracted from the higher
levels of the WSI, most of these images contains checkerboard like severe artifacts as
shown in Fig 1.10. Hence, the output results generated by the tool become meaningless.
We modified the source code of HistoQC such that the working image is extracted from
the level 0 (purest form of the image) and then resized it to the target magnification
level yielding a clearer image.

Figure 1.10: WSI thumbnail used by

HistoQC tool

Figure 1.11: Use-Mask generated by the His-

toQC tool

Comparison of HistoROI with HistoQC

We inferred the 93 WSIs using our HistoROI tool and created binary masks for each
WSI. The 0′s in the mask correspond to the prediction of HistoROI made as ’artifact’
or ’adipose’. All the pixels in a patch were labelled as 0 or 1 as per the prediction to
create the binary mask. The masks were then resized to the size corresponding to the
masks obtained by hand-annotation. Same was performed for the masks obtained from
HistoQC tool. The mean Dice score over WSIs between HistoROI and hand annotations
is observed to be 0.87 whereas, for HistoQC, it is observed to be 0.83. A few qualitative
results are shown in Fig 1.12. The performance of HistoROI is better on 65 WSIs out
of 93 total WSIs. Comparison in the form of scatter plot is shown in Fig 1.13
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Figure 1.12: A few samples of WSIs

with foreground detected by HistoQC

and HistoROI. All the values in the di-

agram are Dice scores

Figure 1.13: Scatter plot of Dice

scores. The blue dotted line indicates

y = x line

Analysis of the above comparison

According to our observations, HistoQC tends to identify the region with relatively less
dense tissue as fat (Figure 1.12-a). Also, HistoQC fails to distinguish between fore-
ground and background when background pixels are greyish. Because of this, HistoQC
performance degrades in the presence of air bubbles (Figure 1.12-b), coverslip-related
artifacts (Figure 1.12-d), etc. HistoROI performs better compared to HistoQC for the
above-mentioned scenarios. On the other hand, HistoQC detects pen marks better than
the proposed model. Further analysis of training data for HistoROI showed that it con-
tains only one WSI with pen marks. These pen marks are also observed to be outside the
tissue region. Hence, in Figure 1.12-c, pen marks outside the tissue region are correctly
identified as background by HistoROI whereas performance is not is expected for pen
marks which are on the tissue region. Though the predictions of HistoROI are pixelated,
because of the patchbased model, the overall Dice score is better than HistoQC. This
indicates that the patch-based dataset contains enough variation for artifacts.
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1.3.4 Improvisation of the HistoROI classification model

The HistoROI six-class classification model was trained using the patches from the 50
WSIs as mentioned in section 1.3.2. The training data consisted of patches from all 50
WSIs and the model was trained using the conventional supervised training algorithm[17]
with Cross-Entropy loss optimization. The output layer of this model is a fully-connected
layer taking a input of 512 dimensional feature vector and outputs a 6 dimensional vector
corresponding to the 6 classes. By using this conventional training method, the cross-
entropy loss tries to find decision boundaries between these 6 classes without considering
the location of the 512-dimensional feature vectors of same class. Ideally, it is expected
to have the feature vectors of same class close to each other and feature vectors with
opposite labels far away from each other in the feature space. But, optimizing the cross-
entropy loss only does not help in achieving the same. To address this problem, we use
the Supervised Contrastive Learning[18] to train our model.

Supervised Contrastive Learning

As an overview of this learning method, during training, a batch of n images is con-
sidered. For each image in the batch, two views of the same image are created using
transformations like random crop, horizontal/vertical flip and so on. These views for all
images are combined to form a batch of 2n views. Now, loss function of this method is
such that feature vectors of all the views belonging to the same class will be brought
closer to each other and feature vectors of views belonging to different class will be sent
far apart. The Loss function used by this method is given by Eqn 1.2

Lsup
out =

∑
i∈I

Lsup
out ,i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
(1.2)

Here, i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary augmented sample, A(i) ≡ I\{i},
P (i) ≡

{
p ∈ A(i) : ỹp = ỹi

}
is the set of indices of all positives in the multiviewed batch

distinct from i, and |P (i)| is its cardinality.

Improved Loss function of the HistoROI classification model

Previous architecture of HistoROI consisted of Resnet18 as backbone that outputs a
512-dimensional feature vector and a single layer linear classifier at the end for 6 classes.
The Loss function used is described in Eqn 1.3.

LCE =

N∑
j=1

Lj = −
6∑

i=1

yilog(pi) (1.3)

Here, yi is the ground truth, pi is the softmax probability and N is the batch size.

In the current architecture, along with the Resnet18 as backbone, two two-layer heads
are added. The first head is called the projection head which takes the 512-dimensional
vector from the backbone and outputs a new 512-dimensional vector. The second head
is the classifier which takes the feature vector from backbone as the input and outputs
the probabilities corresponding to the 6 classes.
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Now, the output from the projection head is used for minimizing the supervised con-
trastive loss whereas the output of the classification head is used to minimize the cross-
entropy loss.

The final Loss function used for the training is described in Eqn 1.4

Total Loss = Lsup
out + λLCE (1.4)

Here, λ is a hyper-parameter and chosen to be 0.5 in this case. For the training purpose,
from the available 50 WSIs, 40 WSIs were chosen randomly to form a train set and rest
of the 10 WSIs for validation. The model was trained for 50 epochs with a batch size
of 128 with each batch having samples from all classes. Patches of size 256x256 from
the 10x magnification level were used as inputs. To create the two views of each patch,
transformations like random horizontal/vertical flip, ColorJitter, Random-Affine and
Gaussian blurring were used. For optimization of loss, SGD optimizer was used with
learning rate 0.005 initially and a lr-scheduler was used to reduce the learning rate by
monitoring the validation loss.

1.4 Results and Discussion

T-SNE plots were used to observe the quality of learnt representations using the Su-
pervised Contrastive Learning method. To compare the quality of the 512-dimensional
representation vectors between the original HistoROI model and the model trained using
the above loss, the quality of clusters in the T-SNE plots was compared as shown in the
Fig 1.20. This analysis was done on the validation set of 10 WSIs with avaialble ground
truth labels. The colour scheme map used in the plots to represent classes is as follows:
Green-Epithelial, Red-Stroma, Blue-Scattered Stroma(adipose), Purple-Lymphocytes,
Pink-Miscellaneous, Golden Yellow-artifacts

Observations:

1. In the Fig 1.14, we see that the variance of the lymphocytes embeddings is high.
Also, many lymphocytes embeddings are found in the clusters of epithelial and
stroma. The new HistoROI model overcomes such problems by tight clustering of
the embeddings and better decision boundaries as seen in Fig 1.15. Similar things
can be observed in the other images 1.20, where the original models tends to have
a loose clustering since the cross entropy loss focuses only on finding good decision
boundaries as opposed to the new model which aims at finding good decision
boundaries but also maintains the quality of the cluster because of the contrastive
loss.

2. Since, the dataset preparation pipeline is such that patches in a cluster (section
1.3.2) are labelled based on visual information from 25 random samples from that
cluster, the dataset is expected to have noisy labels. This is observed in the clusters
formed by the representation vectors of the new HistoROI model. For example,
in Fig 1.25, the patch is labelled as ’stroma’ and found in stroma cluster but it
contains sufficient epithelial cells. In Fig 1.26, the patch is labelled as ’epi’, it
contains ’epi cells too, but is found in stroma cluster. This means there is such
noise in the training data also which results in such ambiguity. There are also
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some patches who have ground truth label as stroma and scattered stroma but
are found inside the epithelial cluster. On visualizing these patches (Fig 1.21,
1.22,1.23, 1.24), it was observed that the patches contained sufficient amount of
epithelial cells and hence were pulled towards epithelial cluster. This asrises a
problem described in the section 1.4.1
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Figure 1.14: Representations of origi-

nal HistoROI (BRACS 1492.svs)

Figure 1.15: Representations of HistoROI

with SupCon Loss (BRACS 1492.svs)

Figure 1.16: Representations of origi-

nal HistoROI (BRACS 1637.svs)

Figure 1.17: Representations of HistoROI

with SupCon Loss (BRACS 1637.svs)

Figure 1.18: Representations of origi-

nal HistoROI (BRACS 1918.svs)

Figure 1.19: Representations of HistoROI

with SupCon Loss (BRACS 1918.svs)

Figure 1.20: Comparison between the cluster quality of the representations of the original model

and the representations of the model trained using SupCon Loss

16



1.4 Results and Discussion

Figure 1.21: Labelled as stroma but

found in ’epi’ cluster

Figure 1.22: Labelled as stroma but found in

’epi’ cluster

Figure 1.23: Labelled as scattered-

stroma but found in ’epi’ cluster

Figure 1.24: Labelled as scattered-stroma but

found in ’epi’ cluster

Figure 1.25: Patch in ’stroma’ but con-

tains ’epi’ cells

Figure 1.26: Labelled as ’epi’ but found in

’stroma’ cluster

Figure 1.27: Analysis of patches from BRACS 1918.svs
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1.4.1 Problems in the current training method

We observe from the Fig 1.20 that there are many patches having sufficient enough
information from multiple classes, but each patch is assigned a single label. This hard-
labelling disables us to clearly identify the actual class of the patch due to the presence
of information from multiple classes. To address this problem, some of the possible
solutions are described in section 1.4.1

Possible Solutions to overcome this problem

1. We can assign multilabels to each patch. For example, if a patch consists of
epithetial and stroma cells, we can assign the patch a 6 dimensional vector as
label, where the only the elements corresponding to epithelial and stroma class
will be 1 and others 0. Now, to create such dataset, it will be an exhausting
process if we look at each patch and label it accordingly. To address this, we can
use the existing data of 50 WSIs, where we have patches have only one label. We
can apply K-means clustering to all the patches from a single class and assign each
cluster multiple labels along with the current label. This process can be repeated
iteratively to get better clusters and hence better dataset. Once we have such
dataset, we can then finally train a classification model which outputs multi-label
predictions. We can use this predictions to generate heatmaps where high value
represents the high contribution of the particular pixel to one particular class.
This information then can be used to generate segmentation masks.

2. Another approach can be to use multiple binary classification models for each
class. This model would take a patch from a WSI as an input and predict whether
the particular class is whether present or not in the patch. If it is present in
the patch, we can use heatmaps to see which region in the patch is contributing
the presence of that particular class. The same patch can be passed through all
the models corresponding to all the classes and the heatmaps which we get from
it can be used to generate segmentation masks. Now, only care that has to be
taken while training these models is we have to select patches which consists of
pure information from only 1 single class. For example, if we are to train a model
to detect whether epithelial cells are present or not in a patch, we have to use
dataset which consists of patches which contain only epithelial cells and no other
class information.
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Chapter 2

Opacity Detection in Chest

X-rays using Supervised

Contrastive learning

2.1 Internship at Qure.ai

Aim: To train a vanilla classification model on 1.2 million+ Chest X-rays using su-
pervised training to identify the presence of Opacity in an X-ray using conventional
supervised training and ’Supervised Contrastive Learning’

2.1.1 Dataset

Total number of Chest X-rays = 1,240,481
All X-rays are 1440x1440 grayscale images resized to 512x512
Labels = Opacity labels (binary) [20.8% labels are positive(1) while 79.2% labels are
negative(0)]

19



2.1 Internship at Qure.ai

Figure 2.1: Positive and Negative Opacity examples in the Dataset

Train and Validation Data:
Train validation split = 80% - 20% respectively
Number of Train images = 992,384
Number of validation images = 248,097
Test Data:
All X-rays were resized to the shape 512x512
Number of Images = 286,800
Labels = Opacity labels (binary) [21.5% labels are positive(1) while 78.5% labels are
negative(0)]

2.1.2 Baseline Training

Model Architecture:
Resnet50 → 2048 feature vector → Two-layered Projection head → 256 feature vector
→ Binary classifier with BCE Loss

Training Specifications: The class imbalance was maintained in both the training
and validation dataset as per the full original dataset [ 20.8% labels are positive(1)
while 79.2% labels are negative(0)].
To deal with class-imbalance, resampling strategy was used. During an epoch, in a
batch, half of the samples were randomly sampled from positive labels with replacement
and half of the samples were sampled from the negative labels iterating over them only
once. The model was trained for 52 epochs with a batch size of 20, each batch containing
half positive and half negative samples. Adam optimizer was used to minimize the BCE
loss with learning rate of 0.005 and scheduler as Reduce LR on plateau (monitoring
validation AUC score)
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2.1.3 Model training using Supervised Contrastive Learning

The same dataset used in the training of the baseline model was used in this method
with the same train and validation data.

Model Architecture:
Resnet50 → 2048 feature vector → Two-layered Projection head → 256 feature vector
→ Binary classifier with BCE Loss

Representation learning: In a batch of 16 images of size 512x512, half images were
sampled from positive labels with replacement and half from negative labels without re-
placement. The transformations of RandomCrop(size=390x390), RandomAffine, Ran-
dom horizontal flip and GaussianBlur were applied on each image twice to get two
augmentations for it and a batch 32 images was created. The Supervised Contrastive
loss (Eqn 1.2) was optimized using the SGD optimizer with learning rate of 0.005 and
scheduler as Reduce LR on plateau (monitoring validation AUC score). The model was
trained for 32 epochs only due to low computational power availibilty.

Supervised training: After the representation learning part, the Resnet50 (backbone)
weights are frozen and the previous projection head is discarded and a new projection
head added with the same architecture as in the baseline (making the SupCon and Base-
line architecture identical). And at the end a linear classifier is added with BCE Loss.
Train and validation datasets are same as in the Baseline training method. Here, re-
sampling strategy is used again to handle the class imbalance. The projection head and
the classifier is trained for a max of 2-3 epochs since very less no. of parameters have
to be trained and we have a very large database.
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2.1.4 Results and Observations

The below table (Fig 2.2) summarizes the results obtained for different implementations
for the same task of Opacity classification in Chest X-rays.

Figure 2.2: Comparison of different implementations

Observations:

1. We see a very high jump in the Train, VaL and Test AUCs in the SupCon model as
compared to the Baseline model given that both models have same architecture.
This concludes that the SupCon method make the model learn a really good set
of representations only for the Opacity classification in turn leading to a better
result in the classification task.

2. Even with a simple ResNet50 model, the Supervised Contrastive method results
are close to the existing results which uses Advanced architectures and ensemble
of models like DeepLabv3+ResNext, EfficientNetB7 and updated version of the
training dataset.
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Chapter 3

Cell Detection using Cell-Tissue

Interaction

3.1 Introduction

Cell detection is one of the most important tasks in Computational Pathology. The
accurate identification and localization of cells within tissue samples are crucial for
quantifying various cellular features, characterizing tissue architecture, and assessing
disease progression. Cell detection acts as a cornerstone for a wide range of pathological
investigations, from cancer diagnosis and grading to the evaluation of immune responses
and the study of infectious diseases.
Pathologists frequently employ a dual approach, zooming out to comprehend tissue-level
structures and zooming in to classify cells based on their morphology and the contextual
information surrounding them. However, certain deep-learning approaches for cell de-
tection solely focus on utilizing small Field-of-View (FoV) patches to detect and classify
cells, neglecting the consideration of the tissue-level structure.
The paper [4] proposes a novel deep-learning approach for cell detection that incorpo-
rates the cell-tissue relationship, aiming to mimic the behaviour of pathologists. Addi-
tionally, the authors introduce a new dataset named OCELOT in [4], which facilitates
the study of the cell-tissue relationship by providing overlapping cell and tissue annota-
tions on images obtained from various organs.
With the objective of advancing the development of robust cell detection methods that
harness the power of cell-tissue interaction, the authors of [4] presented an updated ver-
sion of the OCELOT dataset [4] and organized the OCELOT 2023: Cell Detection from
Cell-Tissue Interaction challenge at MICCAI 2023[5]. The challenge aimed to encourage
research and exploration on leveraging cell-tissue relationships to enhance cell detection
methodologies.
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Figure 3.1: Behavior of pathologists and cell detection models [4]

3.2 The OCELOT Challenge 2023

The Dataset encompasses a diverse collection of field-of-view (FoV) patches, includ-
ing both small and large patches, extracted from digitally scanned whole slide images
(WSIs). Notably, these patches exhibit overlapping regions, offering a comprehensive
representation of the tissue architecture. The small FoV patches are accompanied by
detailed cell annotations, while the large FoV patches provide corresponding tissue an-
notations. The WSIs within the dataset were sourced from the widely accessible TCGA
database[19] and were initially stained using the H&E method before being scanned
using an Aperio scanner.
Each sample of the OCELOT dataset is composed of six components,

D =
{(

xs, y
c
s, xl, y

t
l , cx, cy

)
i

}N

i=1
(3.1)

where xs, xl are the small and large FoV patches extracted from the WSI, ycs, y
t
l refer

to the corresponding cell and tissue annotations, respectively, and cx, cy are the relative
coordinates of the center of xs within xl. The below figure shows the visualization of a
sample.

Figure 3.2: A sample from the OCELOT 2023 Dataset [4]. Each sample of the dataset consists

of two input patches and the corresponding annotations. Left shows the large FoV patch xl

with tissue segmentation annotation ytl′ , where green denotes the cancer area. Right shows the

small FoV patch xs with cell point annotation ycs, where blue and yellow dots denote tumor and

background cells, respectively. The red box indicates the size and location of the xs with respect

to the xl.
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3.3 Dataset Details

The Dataset comprises of train, validation, and test subsets, consisting of 400, 137,
and 130 patch pairs, respectively. Each patch pair within the dataset consists of two
components: a tissue patch (large Field-of-View or FoV) with dimensions of 4096x4096
pixels and a cellular patch (small FoV) with dimensions of 1024x1024 pixels. Notably,
the cellular patch is entirely contained within the tissue patch, allowing for the complete
overlap of cellular and tissue information. To ensure consistency and comparability, the
tissue patches are uniformly resized to dimensions of 1024x1024 pixels.
Each cellular patch is accompanied by an annotation file in CSV format. The CSV file
contains coordinates of individual cells within the patch, along with their corresponding
class labels, which can be either Background cell (BC) or Tumor cell (TC). On the other
hand, the tissue patches are annotated using segmentation masks. The annotation for a
tissue patch is represented as a segmentation mask, where each pixel is assigned to one
of three classes: Background, Cancer area, or Unknown area.

3.4 Evaluation metric

This challenge uses the mean F1 (mF1) score as a primary metric which is the average
of the F1 score of all cell classes. The F1 score is a commonly used metric for cell
detection that considers precision and sensitivity simultaneously. For each cell class, the
F1 score is computed by the following equation:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(3.2)

where Precision = TP
TP+FP and Recall = TP

TP+FN

Here, TP, FP and FN denote True Positive, False Positive, and False Negative detec-
tions, respectively.

3.4.1 Hit Criterion for cell detection

To determine the TP, FP, and FN, the following process is followed per cell class.

1. Retrieve cell predictions and ground-truth cells from a certain class.

2. Sort cell predictions by their confidence score.

3. Starting from a cell prediction with the highest confidence score, check whether
any ground-truth cell is within a valid distance ( ∼ 15 pixels, ∼ 3 um) from the
cell prediction.

(a) If there is no ground-truth cell within a valid distance, the cell prediction is
counted as an FP

(b) If there are one or more ground-truth cells within a valid distance, the cell
prediction is counted as a TP. The nearest ground-truth cell is matched with
the cell prediction and not considered for further matching.

4. Go back to Step 3 until the cell prediction with the lowest confidence score is
reached.
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5. The remaining ground-truth cells that are not matched with any cell prediction
are counted as FN.

Figure 3.3: Hit criteria for cell detection [5]

3.5 Methodology

We employed various training and inference algorithms and selected the most optimal
approach based on rigorous evaluation. Herein, we present the different strategies that
were explored and analyzed to identify the best-performing algorithm.

3.5.1 YOLOv8 objection detection model

Given the similarity between detecting cell locations and object detection, we initially
employed the YOLOv8[20] (current state-of-the-art object detection model) for detecting
the bounding boxes corresponding to cells. Our approach commenced by focusing solely
on the cellular patches, where we annotated bounding boxes measuring 30x30 pixels,
which aligns with the typical size of a cell within the patch. These bounding boxes were
centered around the coordinates provided in the ground truth CSV labels.

Training Details

1. As the organizers provided us with access only to the training data, which consisted
of 400 patch pairs, we conducted a random split of the dataset into an 8:1:1 ratio for
training, validation, and testing, respectively. This particular split was consistently
utilized for all subsequent analyses and purposes throughout the study.

2. Since, the train data was very limited, the following data augmentations were used:

(a) Random Horizontal and Vertical Flip

(b) 90o rotation, clockwise or counter-clockwise

(c) Rotation (between −15oand 15o)

(d) Shear (±15o Vertical, ±15o Horizontal)

3. For cell detection, we employed a YOLOv8 model with a medium size, encompass-
ing approximately 25 million parameters. To facilitate efficient training, the input
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images were resized to dimensions of 736x736 pixels. The model was trained for
100 epochs, and the best-performing model, as determined by its performance on
the validation set, was saved for further evaluation and predictions.

Results

To obtain optimal results during the prediction phase, we used a confidence threshold
(conf) of 0.2 and an intersection over union (IOU) threshold of 0.5 while predicting with
the trained YOLOv8[20]. These threshold values were determined through experimen-
tation and resulted in the most accurate predictions for cell detection.

Pre (BC) Re (BC) F1 (BC) Pre (TC) Re (TC) F1 (TC) mF1

Train 0.676 0.8247 0.743 0.8784 0.7265 0.7952 0.769

Valid 0.5423 0.6083 0.5734 0.8067 0.6392 0.7132 0.643

Test 0.5281 0.4933 0.5101 0.7748 0.6566 0.7108 0.610

Table 3.1: BC: Background cell, TC: Tumuor Cell, Pre: Precision, Re: Recall

3.5.2 Visualization of the predictions

In the below images, Red boxes indicate Tumor Cells (TC) and the Green boxes indicate
(BC)

Figure 3.4: YOLOv8 correctly predicting cell locations and their classes

Figure 3.5: YOLOv8 incorrectly predicting cell locations
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Figure 3.6: YOLOv8 incorrectly predicting the classes of predicted cells

3.5.3 YOLOv8 with a cell-classifier

Upon evaluating the predictions made by the aforementioned YOLOv8 model on both
the test and validation sets, it was evident that the model successfully detected the cell
locations with a reasonable level of accuracy. However, we noticed several instances in
which the classification of cells was inaccurate. To address this issue, we hypothesized
that the imbalanced distribution between the number of tumor cells and background
cells might have contributed to the poor classification performance.

In light of this, we decided to employ a separate classifier to improve the accuracy of
cell classification. The classifier was trained specifically on patches measuring 128x128
pixels, providing sufficient coverage for an entire cell. These patches were extracted from
the training dataset and centered around the coordinates provided in the ground truth
CSV files. By training the classifier on these patches while sampling them uniformly from
both classes, we aimed to mitigate the issues arising from imbalanced class distribution
and enhance the accuracy of cell classification, independent of the YOLOv8 model’s
classifications.

Figure 3.7: Proposed pipeline for YOLOv8

Results

Pre (BC) Re (BC) F1 (BC) Pre (TC) Re (TC) F1 (TC) mF1

Train 0.7228 0.8255 0.7708 0.8635 0.7539 0.805 0.7879

Valid 0.4857 0.6271 0.5474 0.7912 0.5857 0.6731 0.610

Test 0.5151 0.5585 0.5359 0.7891 0.6033 0.6838 0.609

Table 3.2: BC: Background cell, TC: Tumuor Cell, Pre: Precision, Re: Recall
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Based on the analysis of the obtained results, we made the decision to discard the
aforementioned model, as no noticeable improvement was observed in comparison to
the classification results achieved by the YOLOv8 model. Our analysis led us to believe
that in order to achieve accurate cell classification, a broader context, such as the tissue
region from which the cell patch is extracted, is required.

To address this challenge, we hypothesized that incorporating information from the
tissue segmentation results could potentially enhance the cell classification task. The tis-
sue segmentation results, which also encompass two classes that align with the classes we
aim to classify (e.g., background and tumor cells), have the potential to provide valuable
contextual information. By leveraging the tissue segmentation results, we anticipate an
improvement in the classification accuracy, as it allows for a more comprehensive un-
derstanding of the local tissue environment surrounding the cells. We incorporate this
in our next model.

3.5.4 YOLOv8 with Tissue segmentation model

Training details of Tissue Segmentation Model

The Tissue Segmentation model implemented in this research study adopts the DeepLabv3+
architecture[21], using a resnet34 encoder[22]. To train the model, tissue patches from
the training set were utilized, along with their corresponding ground truth annotations.
The ground truth annotations encompassed three distinct classes: Background area,
tumor area, and unknown area.

Given the limited availability of training data, various data augmentation techniques
were employed to augment the dataset. These augmentations included random horizon-
tal and vertical flips, as well as 90o rotations (both counterclockwise and clockwise).

During the training process, the Tissue Segmentation model was trained for 200
epochs, utilizing a batch size of 32. The Adam optimizer was employed to optimize
the model’s parameters. To further optimize the learning process, a Cosine Annealing
learning rate scheduler was employed. The model was trained using the cross-entropy
loss function, with the objective of minimizing the discrepancy between predicted and
ground truth segmentation masks. Ultimately, the model with the lowest validation loss
was selected as the optimal model for further analysis and evaluation.

Visualization of predicted tissue segmenation masks

In the below figures, the Green area represents the background area class, the Red area
indicates the Tumor region while the blue area indicates unknown class. All the tissue
patches below are from the validation set.
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3.5.5 Integration of YOLOv8 and Tissue segmentation model

Figure 3.8: Integrating tissue segmentation predictions with YOLOv8 results

In order to integrate the predictions of the Tissue Segmentation model with YOLOv8,
a specific process was followed. Initially, the output mask, containing probabilities,
generated by the Tissue Segmentation model was utilized. From this output mask, a
256x256 patch was cropped, which corresponded to the cellular patch within the given
data point. The metadata of the dataset provided the center coordinates of the cellular
patch within the tissue patch. To ensure compatibility, the 256x256 patch was then
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upsampled four times using nearest neighbor interpolation, aligning it with the size of
the cellular patch.

Subsequently, the cell locations predicted by the YOLOv8 model were incorporated.
For the purpose of classification, the class was determined by selecting the maximum
probability value between the probabilities obtained from the YOLOv8 model and the
tissue segmentation probabilities for the specific cell location. By combining these proba-
bilities, the classification process aimed to leverage the strengths of both models, thereby
improving the overall accuracy and reliability of cell classification.

Results

Pre (BC) Re (BC) F1 (BC) Pre (TC) Re (TC) F1 (TC) mF1

Train 0.6592 0.7041 0.6809 0.7814 0.7164 0.7475 0.7142

Valid 0.6123 0.5441 0.5762 0.7768 0.6712 0.7201 0.648

Test 0.6584 0.5133 0.5769 0.7697 0.718 0.743 0.66

Table 3.3: BC: Background cell, TC: Tumuor Cell, Pre: Precision, Re: Recall

The integration of the tissue segmentation model’s predictions into the classification task
has demonstrated its effectiveness, as evidenced by the notable increase in the mean-F1
score on both the validation and test sets. These results unequivocally indicate the
significance of considering a broader context when determining the appropriate class for
a given cell.

By incorporating the tissue segmentation model’s predictions, which encompass in-
formation about the surrounding tissue environment, the classification process becomes
more comprehensive and accurate. The improved mean-F1 score highlights the value of
incorporating contextual information to enhance the understanding and classification of
cells.

3.5.6 Cell detection by Cell-only segmentation method

In this section, we explore a new approach for cell detection by reframing the problem
as a segmentation task, diverging from the conventional perspective of object detection.
Initially, we focus exclusively on utilizing the cellular patches derived from the train-
ing set. To facilitate this approach, ground masks are generated with dimensions of
1024x1024x3, where each channel represents a specific class: Tumor cell, background
cell, and background region.

To create the ground masks, we adopt a circular representation methodology. Fixed-
radius circles, measuring 15 pixels in diameter, are drawn around the cell coordinates
provided in the ground truth CSV files. These circles are placed in the respective
channel corresponding to the class of the specific cell. This process enables the creation
of accurate and comprehensive masks, encompassing the desired cell classes within the
cellular patches.
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Training Details of the Cell-only segmentation model

We employed the DeepLabv3+ architecture[21] with a ’resnet34’ encoder[22] to train a
model utilizing the cell patches and ground truth masks derived from annotated CSV
files. Due to the limited availability of training data, we applied various data aug-
mentation techniques to augment the dataset. These augmentations included random
horizontal/vertical flips, 90-degree rotations (both clockwise and counterclockwise), and
ColorJitter transformations. These techniques aimed to enhance the model’s ability to
generalize and alleviate potential issues related to overfitting.

For training, we utilized the Multilabel Dice loss function[23] in conjunction with an
Adam optimizer[15]. To optimize the learning process further, we incorporated a Cosine
Annealing learning rate scheduler[24]. The model underwent training for a total of 200
epochs, and the model with the best validation loss was saved for subsequent analysis
and evaluation. This comprehensive training process enabled the model to learn and
extract meaningful features from the cell patches, enhancing its ability to accurately
segment and classify cells in the subsequent stages of the study.

Visualization of the Preicted Heatmaps

In the below figures, the blue colour represents the background area, the Green colour
represents the Background cells and the Red colour indicates Tumour cells.

Figure 3.9: An example output of cell segmentation model from validation set

Figure 3.10: An example output of cell segmentation model from validation set
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Cell detection using the Probabilty heatmap

After obtaining the probability heatmap from the cell-only segmentation model, we
employ a systematic algorithm to extract the precise cell locations and determine their
respective classes. The steps involved in this algorithm are as follows:

1. Split the channels of the heatmap as background channel (1024x1024x1) and non-
background channels (1024x1024x2)

2. Calculate the detection score by subtracting the background channel from 1.0.

3. Smooth the detection score using a Gaussian filter with a 5x5 kernel and σ = 3.

4. Find the peaks in the smoothened detection score, considering a minimum dis-
tance of 10 pixels between peaks using the library feature.peak_local_max from
scikit-image

5. Compute the maximum values and classes for each spatial location.

6. Filter out peaks where the background score is higher than the maximum value.

7. Extract the scores and classes of the remaining peaks.

An example output of using this algorithm on the heatmap from Fig 3.9 is as follows:

Results

Pre (BC) Re (BC) F1 (BC) Pre (TC) Re (TC) F1 (TC) mF1

Train 0.8301 0.8177 0.8238 0.8907 0.8124 0.8498 0.8368

Valid 0.6319 0.5679 0.5982 0.7958 0.719 0.7554 0.677

Test 0.6636 0.5785 0.6181 0.7807 0.6735 0.723 0.67

Table 3.4: BC: Background cell, TC: Tumuor Cell, Pre: Precision, Re: Recall
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The results obtained clearly demonstrate that the segmentation-based approach signifi-
cantly outperforms the YOLOv8-based cell detection method, both in terms of validation
and test datasets. The margin of improvement observed highlights the efficacy of the
segmentation approach in accurately detecting and classifying cells.

While the segmentation-based approach proved successful, it is important to note
that it did not incorporate the utilization of tissue patches. In the subsequent section,
we aim to further enhance the results by leveraging the inclusion of tissue patches.
In the Section 3.5.4, we saw that incorporating tissue segmentation for classification, in
conjunction with the YOLOv8 method, yielded even better performance. The promising
improvement observed when utilizing tissue segmentation in the previous experiments
motivates us to explore its potential for further enhancing the overall scoring metrics.

3.5.7 Cell-Tissue Segmentation Model

The idea behind this model is to utilize the tissue segmentation predictions while training
the cell segmentation model. The Figure below represents the pipeline we follow to get
the output as a probability heatmap.

We leverage the Tissue Segmentation model trained in Section 3.5.4, utilizing its
frozen weights. To create the input for this approach, we construct a multi-channel
image with dimensions of 1024x1024x6. This is achieved by concatenating the cell patch
with the cropped and upsampled (4 times) tissue segmentation predictions, wherein the
cropped portion of the prediction aligns with the cellular region within the corresponding
tissue patch.

By combining the cell patch and the augmented tissue segmentation predictions, we
create a comprehensive input representation that captures both the cellular and tissue
context.

Training Details

We utilized the DeepLabv3+ architecture [21] with a ’resnet34’ encoder[22] to train a
model that integrates cell patches, tissue segmentation predictions, and ground truth
masks obtained from annotated CSV files. To address the limited availability of training
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data, we employed various data augmentation techniques on the cell patches. These tech-
niques encompassed random horizontal/vertical flips, 90-degree rotations (both clock-
wise and counterclockwise), and ColorJitter transformations.

During the training process, we employed the Multilabel Dice loss function [23] in
conjunction with the Adam optimizer[15]. To further enhance the learning process, we
integrated a Cosine Annealing learning rate scheduler [24]. The model was trained for
200 epochs, and the version with the lowest validation loss was selected as the final
model for subsequent analysis and evaluation.

Results

Pre (BC) Re (BC) F1 (BC) Pre (TC) Re (TC) F1 (TC) mF1

Train 0.8301 0.8177 0.8238 0.8907 0.8124 0.8498 0.8368

Valid 0.5995 0.6356 0.617 0.7874 0.7184 0.7513 0.684

Test 0.6592 0.678 0.6685 0.8097 0.7196 0.762 0.715

Table 3.5: BC: Background cell, TC: Tumuor Cell, Pre: Precision, Re: Recall

3.6 Results and discussion

In this section we compare the validation and test results of all the above models in the
following table.

Model/Algorithm Validation (mF1 score) Test (mF1 score)

YOLOv8 0.643 0.61

YOLOv8+Classifier 0.610 0.609

YOLOv8+Tissue segmentation

for classification
0.648 0.66

Cell Segmentation 0.677 0.67

Cell-Tissue Segmentation 0.684 0.715
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Chapter 4

Development of a Quality Control

tool for WSIs using Deep learning

4.1 Introduction

Histopathology, the microscopic examination of tissue specimens, plays a pivotal role
in the diagnosis, prognosis, and treatment planning of various diseases, including can-
cer. As the demand for accurate and efficient diagnostic tools continues to grow, digital
pathology has emerged as a transformative field, enabling the digitization of histological
slides into Whole Slide Images (WSIs). These digital representations allow pathologists
to remotely access, share, and analyze tissue samples with unprecedented convenience
and collaboration potential. However, the successful adoption of digital pathology crit-
ically relies on the development and implementation of robust quality control mecha-
nisms, ensuring the reliability and accuracy of WSIs.
Quality control in histopathology encompasses a broad range of challenges, including
staining variations, tissue artifacts, scanning artifacts, and image artifacts, among oth-
ers. These factors can introduce significant variability and may compromise the ac-
curacy and reproducibility of diagnostic interpretations. Manual inspection by expert
pathologists remains the gold standard for quality control, but it is time-consuming and
subjective. Therefore, there is an urgent need for automated, objective, and efficient
quality control techniques that can ensure the integrity and consistency of WSIs, thereby
improving diagnostic accuracy and patient care. In this research paper, we present a
novel technique that focuses on training segmentation models specifically tailored for
histopathology images. Our approach addresses the inherent challenges associated with
histopathology image analysis, particularly the accurate identification of distinct tissue
components and the detection of various artifacts. To tackle these challenges, we have
devised four segmentation models: blur level segmentation, tissue segmentation, tis-
sue fold segmentation and pen marker segmentation. A significant contribution of our
study lies in the integration of domain knowledge derived from the HistoROI model.
This domain knowledge serves as a valuable resource for optimizing the data sampling
process during training, ultimately leading to the development of more precise and ro-
bust segmentation models. By harnessing the unique characteristics of histopathology
images and leveraging our innovative training technique, we strive to improve the overall
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accuracy and reliability of histopathology image analysis.

4.2 Review of Literature

4.2.1 HistoQC: Quality Control Tool for Digital Pathology Slides

Introduction

Various types of artifacts can be introduced in the final Whole Slide Image (WSI) as a
result of small, unavoidable errors during the slide preparation and digitization process.
Manual review of glass and digital slides is laborious and subject to high variability
among different pathologists. To address these challenges, the authors of [10] have
developed a tool that employs a reproducible automated approach to precisely localize
artifacts. This tool aims to identify slides that need to be reproduced or regions that
should be avoided during computational analysis.

Methods

The HistoQC tool[10] is executed by providing a configuration file containing user-
defined parameters. These parameters specify the modules to be run, their order of
execution, the level of the WSI for image extraction, various kernel sizes and thresholds
for different modules, and other relevant parameters. The tool is implemented using a
python-based pipeline, which executes all the modules mentioned in the configuration
file. Upon completion, the tool generates several output images, including a thumbnail
of the WSI, a mask indicating the useful region within the WSI, a mask highlighting
blurry locations, a mask identifying pen markings, and more. HistoQC also offers an
interactive graphical user interface that presents the user with identified regions free of
artifacts along with associated metrics. This interface allows for real-time visualization
and filtering, which greatly facilitates the detection of artifacts

Results and Discussion

To validate the results provided by the HistoQC tool, two pathologists experienced in
digital pathology were enlisted to grade each of the output masks generated by HistoQC
as either acceptable or not acceptable. Acceptance required a minimum of 85% area
overlap between the pathologists’ visual evaluation and HistoQC’s computational eval-
uation of artifact-free tissue. The overall agreement between HistoQC and the expert
pathologists was found to be 95% (477 out of 500), indicating a high level of concordance
between the tool and human experts.

4.3 Methodology

In this study, our main focus was on accurately identifying and categorizing artifacts
present in medical images. To accomplish this objective, we developed four distinct
models for segmenting artifacts, each specifically designed to address a specific type:
blur level, tissue fold, pen marker, and tissue segmentation.
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4.3.1 Pen Marker Segmentation Model

To ensure the availability of annotated samples for training the pen marker segmentation
models, a specific dataset was used in this experiment. The dataset consisted of images
that were annotated at 0.625X magnification and included various colored pen markers,
such as black, red, green, yellow, and more. The inclusion of a diverse range of pen
marker colors commonly found in pathology aimed to make the dataset representative
of real-world scenarios.

To train the pen marker segmentation model, a data sampling strategy was imple-
mented. This strategy involved randomly selecting a mask from the dataset and then
randomly sampling a positive pixel, which represents a pixel with a pen marker, within
that mask. A patch of size 512x512 was extracted around the randomly sampled pixel,
serving as the input to the model during the training process. By employing this ap-
proach, the model was exposed to a diverse set of examples during training, mitigating
the risk of overfitting and improving its generalization performance.

During training, a combination of cross-entropy, focal, and dice loss functions were
utilized to optimize the model. This optimization strategy aimed to enhance the model’s
ability to accurately segment pen markers in different image contexts. Fig 4.1 in the
research paper provides a visual representation of an annotated image from the dataset,
showcasing the successful segmentation of pen markers.

Figure 4.1: Example of Pen annotation

4.3.2 Tissue Folds Segmentation Model

For the training of the Tissue folds segmentation model, a dataset comprising 250 patches
from the BRIGHT[13] dataset was used. The images in the dataset were annotated
specifically for tissue folds at a magnification level of 5x to ensure accurate capture
of these features. The same training strategy employed for pen marker segmentation
(Section 4.3.1) was also utilized for tissue segmentation to promote generalization per-
formance of the model.

The below Figure 4.2, an example of a tissue folds image along with its corresponding
segmentation mask is presented.
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Figure 4.2: Example of a Tissue Fold

4.3.3 Blur level Segmentation Model

Detecting blur levels in whole slide images (WSI) is challenging due to texture variations
across different regions. Traditional laplacian-based methods struggle with consistent
performance, especially when faced with diverse textures like normal stroma versus
cellular regions. To address this, we combined a patch mining approach with the His-
toROI model. By utilizing patch mining, the segmentation model learns typical texture
patterns for specific regions in the WSI, overcoming the limitations of laplacian-based
methods. The HistoROI model helps differentiate between regions, enhancing accuracy
in blur detection. For training the segmentation model, we applied synthetic blur to
patches identified as foreground by HistoROI. Multiple blur levels were used, and the
model was trained on 5x magnification patches, utilizing the boxblur function of the
PIL library to generate synthetic blur.

(a) (b)

Figure 4.3: Example of 4.3(a) Blur levels and 4.3(b) masks

4.3.4 Tissue Segmentation model

We focused on tissue segmentation in whole slide images (WSI) at a 2.5x magnifica-
tion level, striking a balance between capturing tissue structures and computational
efficiency. Using the HistoROI model and the cut-paste method, we extracted rele-
vant patches for tissue detection and incorporated them into our training dataset. One
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challenge in tissue detection is differentiating between background and adipose tissue.
To address this, we treated adipose tissue as a separate class, enabling more accurate
differentiation. To enhance the model’s robustness in identifying artifacts and pen mark-
ers, we applied heavy color jitter augmentation to background patches, creating diverse
training data. This approach improved the model’s ability to accurately detect tissue
regions and artifacts, enhancing overall performance.

Figure 4.4: Example of Tissue vs background vs Adipose in a WSI

Cut-Paste Method

Training accurate segmentation models for whole slide images (WSI) can be challeng-
ing due to limited annotated data and imbalanced data distribution. To address these
challenges, we employed a cut-paste method for training segmentation networks. This
involved cutting patches from WSIs and pasting them into smaller fixed-size patches for
training, ensuring representative samples in each training batch and mitigating skewed
data distribution. Additionally, we integrated the HistoROI patch classification model
to enhance segmentation accuracy. By utilizing the HistoROI model, we selectively
chose patches or regions from specific classes, such as epithelial, stroma, lymphocytes,
adipose, miscellaneous, or artifact, during training, ensuring a balanced representation
of different tissue regions.
The HistoROI model, trained using a deep neural network on patch-level data, demon-
strates remarkable accuracy in patch classification. Through the integration of the cut-
paste method and the HistoROI model, we successfully overcome the obstacles presented
by limited annotated data and imbalanced data distribution. This combined approach
empowers us to construct segmentation models for WSI analysis that are both robust
and highly accurate.
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Figure 4.5: Illustration of cut-paste method. (1) Random Sampling: In a big mask randomly

select the labels for patch size, (3) Output of HistoROI for WSI in (2), (4) stratified sampling is

applied using HistoROI output and the patches from WSI is selected, (5) Randomly generated

mask label and stratified sampling are fed to the segmentation model for training.

4.3.5 Model Architectures

The segmentation models considered in this research are all based on the UNet++
architecture, a widely recognized framework for image segmentation. For the pen marker
segmentation model, we employed ResNet34 as the backbone, while EfficientNet-b0
was chosen as the backbone for the blur segmentation, tissue fold segmentation, and
tissue segmentation models. These backbones were pre-trained on the Imagenet dataset,
ensuring their ability to extract relevant features from the input images effectively.
To achieve efficient execution, especially at higher magnifications, we opted for the
lightweight EfficientNet-b0 backbone for the latter three models.
By employing the UNet++ architecture, pre-trained backbones, and the convenience of
the segmentation-models-pytorch library, we established a robust and efficient framework
for training our segmentation models. These models serve as integral components of our
comprehensive quality control framework for whole slide images, providing accurate and
reliable segmentation results.

4.4 Experiments and Results

This section presents the experiments performed to validate our approaches for quality
control and nuclei density prediction. We assessed the accuracy of our final usable masks
by comparing them to the functional masks generated by the HistoQC tool. The dice
score was employed to measure the similarity and overlap between the two sets of masks,
enabling us to evaluate the effectiveness of our segmentation models in generating high-
quality masks. Furthermore, we evaluated the performance of our blur level prediction
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model on publicly available datasets, namely FocusPath[25] and TCGA@Focus[26].

4.4.1 Blur Level Segmentation Model Performance

The research paper discusses two datasets used in the experiments. The FocusPath
dataset consists of diverse Whole Slide Image (WSI) scans captured at different focus
levels, exhibiting varying degrees of blur. It includes 864 image patches of size 1024x1024
with different levels of blur. Ground truth scores indicating the focus level of each
image patch are provided, making this dataset valuable for evaluating focus quality in
digital pathology and microscopy images. The TCGA@Focus dataset, obtained from
The Cancer Genome Atlas repository, consists of 1000 whole slide images representing
52 organ types. Each region of interest in the images is annotated as ”in-focus” or ”out-
focus” and assigned binary ground truth scores. This dataset contains 14,371 image
patches, enabling a comprehensive evaluation of the blur level prediction model across
diverse tissue textures and color information.

As the datasets were initially intended for classification tasks, the research paper
describes a method to estimate the blur level as a classification probability. The approach
involves calculating the mean of the predicted segmentation mask, summarizing the
blur level information from segmented regions to obtain an overall blur level value.
This enables the transformation of the output of the segmentation model into a format
interpretable as a classification result. The experiments conducted on the datasets
demonstrated the model’s performance in predicting blur levels, achieving a Receiver
Operating Characteristic - Area Under the Curve (ROC-AUC) of 0.883 on the FocusPath
dataset and 0.786 on the TCGA@Focus dataset. These results highlight the effectiveness
of the model in predicting blur levels and its potential for application in blur assessment
tasks.

4.4.2 WSI Profiler

In this experiment, we proposed a methodology to generate a final usable mask by in-
tegrating the outputs of multiple models. Handling the large size of the Whole Slide
Images (WSIs) posed a challenge, as it was impractical to load the entire slides into
the system, even at 5x resolution. To overcome this limitation, we employed a strategy
where the WSIs were divided into smaller sections, processed individually, and then
combined to create a mask for the entire slide image.
The workflow consisted of sequentially applying various models to the WSIs. The first
step involved tissue detection, followed by blur-level detection, tissue fold detection,
and pen detection. These models were executed on a comprehensive dataset comprising
11,529 whole slide images sourced from the Cancer Genome Atlas (TCGA) repository.
Additionally, we conducted HistoQC analysis on all 11,529 images to serve as a basis
for comparison and evaluation purposes.
The visual comparisons between the output of HistoQC and our WSI profiler are de-
picted in the accompanying figures. These figures provide a visual representation of the
similarities and differences in the results obtained from both methods.
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(a) (b)

(c)

Figure 4.6: Pen model prediction 4.6(a) shows the thumbnail of the image, 4.6(b) shows the

histoQC pen marking output and 4.6(c) shows the wsi profiler pen marking segmentation model

output

Figure 4.7: Tissue folds model prediction
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(a) (b)

(c)

Figure 4.8: Final useful mask prediction 4.8(a) shows the thumbnail of the image, 4.8(b) shows

the histoQC output and 4.8(c) shows the our wsi profiler output

Additionally, in order to assess the performance of our WSI profiler model, we em-
ployed the Dice score metric to compare the generated masks with those produced by
HistoQC. The Dice score quantifies the degree of overlap between two binary masks,
serving as a measure of their similarity. The distribution of Dice scores is illustrated
in Figure 4.9. The results indicate a high level of agreement between HistoQC and our
WSI profiler model for the majority of WSIs. Specifically, out of the 11,529 WSIs eval-
uated, approximately 74% (8,847 WSIs) exhibited a Dice score exceeding 0.7, signifying
a substantial level of concordance between the two methods.
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Figure 4.9: Histogram of Dice score between HistoQC and our WSI profiler models for TCGA

WSIs
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

5.1.1 HistoROI: Histopathology specific preprocessing

In this study, we used the human-in-the-loop active learning paradigm to prepare a
patch-level dataset for classifying pathology-relevant region of interests (ROIs). We
trained a 6-class classification model HistoROI using the prepared data to classify the
patches into one of the following - epithelial, stroma, lymphocytes, artifacts, miscella-
neous and adipose. We investigated the performance of HistoROI on the predictions of
atrifacts by comparing it with HistoQC and concluded that our model works better in
terms of predicting the artifacts. We also improved the HistoROI classification model
by using the Supervised Contrastive Learning to generate better feature embeddings of
the patches. We also noticed few shortcomings with the data preparation process in
detail and provided possible solutions to overcome them.

5.1.2 Cell detection using Cell-Tissue Interaction

1. In conclusion, our findings in Section 3.6 demonstrate the effectiveness of incor-
porating the tissue segmentation model alongside a baseline algorithm to provide
a broader context for cell classification. Notably, we observed significant improve-
ments in the results when employing the cell segmentation method compared to
the YOLOv8 approach for cell detection.

2. The best-performing model was one that leveraged the cell segmentation method in
conjunction with the tissue segmentation predictions. This model was submitted
during the validation phase of the challenge. We achieved a promising mF1 score
of 0.67 on the validation dataset, which, at present, remains unpublished by the
challenge organizers.

3. At the time of writing, our model has secured the 4th position on the leaderboard.
These results underscore the efficacy of our proposed methodology, highlighting the
importance of leveraging both cellular and tissue context in accurately detecting
and classifying cells. Our performance in the challenge reflects the potential impact
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of our research in advancing computational pathology and lays the foundation for
further investigations in this field.

5.1.3 Quality Control tool for WSIs

Our study has presented a comprehensive framework for quality control in whole slide
images (WSIs) by leveraging a combination of segmentation models. By incorporating
blur level detection, tissue fold detection, tissue detection, and pen marker detection, we
successfully generated a final usable mask for WSIs. The comparison of our results with
the widely used HistoQC tool revealed a remarkable level of agreement, demonstrating
the effectiveness of our WSI Profiler model as a quality control tool.

Through the integration of multiple segmentation models, our framework offers a
robust approach for assessing the quality of WSIs. By accurately detecting blur levels,
identifying tissue folds, distinguishing tissue regions, and detecting pen markers, our
model addresses critical aspects of quality control in digital pathology and microscopy.
The high level of agreement between our WSI Profiler model and HistoQC emphasizes its
reliability and potential for improving quality control processes in the field of pathology.

The comprehensive framework presented in this study provides a valuable tool for
researchers, pathologists, and clinicians working with WSIs. By automating the qual-
ity control process and providing a reliable assessment of image quality, our model
streamlines the analysis workflow and enhances the accuracy and reliability of diagnos-
tic evaluations based on WSIs.

5.2 Future Works

5.2.1 HistoROI: Histopathology specific preprocessing

As we discussed the shortcomings of the current data preparation pipeline in section
1.4.1, in the stage-2 of the project, we intend to implement the possible solutions dis-
cussed in section 1.4.1 and move towards developing a more robust Quality Control
solution with additional task of generating segmentation masks.

5.2.2 Cell detection using Cell-Tissue Interaction

1. Joint Training: Investigating the joint training of the tissue and cell segmentation
models is a potential avenue for improvement. By assigning appropriate weights
to the corresponding loss functions, we can explore the synergy between these
two tasks. It would be beneficial to experiment with various architectures beyond
the DeepLabV3+ model we employed, in order to determine the most effective
combination and validate the results.

2. Loss Function Exploration: Another area for exploration lies in the realm of loss
functions. While our current approach employs the dice loss for training the cell
segmentation model and cross-entropy loss for the tissue segmentation model, there
exist a plethora of alternative loss functions that could potentially yield better
performance. By systematically exploring and comparing different loss functions,
along with thorough hyper-parameter tuning, we can identify the most suitable
choice for each model and optimize their performance.
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5.2 Future Works

5.2.3 Quality Control tool for WSIs

1. Future research should focus on further investigating advanced architectures and
techniques beyond the UNet++ model. This exploration has the potential to
enhance the accuracy and efficiency of segmentation models utilized in the WSI
Profiler.

2. To gain deeper insights and identify the strengths and weaknesses of the quality
control tool developed, it is crucial to involve clinical pathologists in the evalu-
ation process. Conducting a comparative evaluation between the disagreement
observed with HistoQC and the disagreement detected by our quality control tool
can provide valuable insights. Involving clinical pathologists will help assess the
performance of the tool in relation to human expert judgment and identify areas
for improvement.

3. In order to assess the practical impact of the findings and validate the developed
quality control method, deployment in real clinical settings is necessary. The
implementation of these methods in clinical settings will allow for their evaluation,
validation, and assessment of usefulness in improving pathology workflows.

48



Bibliography

[1] Birgid Schömig-Markiefka, Alexey Pryalukhin, Wolfgang Hulla, Andrey Bychkov,
Junya Fukuoka, Anant Madabhushi, Viktor Achter, Lech Nieroda, Reinhard
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